skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Islam, Mazharul"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 12, 2026
  2. Secure multi-party computation (MPC) techniques can be used to provide data privacy when users query deep neural network (DNN) models hosted on a public cloud. State-of-the-art MPC techniques can be directly leveraged for DNN models that use simple activation functions (AFs) such as ReLU. However, these techniques are ineffective and/or inefficient for the complex and highly non-linear AFs used in cutting-edge DNN models. We present Compact, which produces piece-wise polynomial approximations of complex AFs to enable their efficient use with state-of-the-art MPC techniques. Compact neither requires nor imposes any restriction on model training and results in near-identical model accuracy. To achieve this, we design Compact with input density awareness, and use an application specific simulated annealing type optimization to generate computationally more efficient approximations of complex AFs. We extensively evaluate Compact on four different machine-learning tasks with DNN architectures that use popular complex AFs silu, gelu, and mish. Our experimental results show that Compact incurs negligible accuracy loss while being 2x-5x computationally more efficient than state-of-the-art approaches for DNN models with large number of hidden layers. Our work accelerates easy adoption of MPC techniques to provide user data privacy even when the queried DNN models consist of a number of hidden layers, and trained over complex AFs. 
    more » « less
  3. Demand for fast data sharing among smart devices is rapidly increasing. This trend creates challenges towards ensuring essential security for online shared data while maintaining the resource usage at a reasonable level. Existing research studies attempt to leverage compression based encryption for enabling such secure and fast data transmission replacing the traditional resource-heavy encryption schemes. Current compression-based encryption methods mainly focus on error insensitive digital data formats and prone to be vulnerable to different attacks. Therefore, in this paper, we propose and implement a new Huffman compression based Encryption scheme using lightweight dynamic Order Statistic tree (HEliOS) for digital data transmission. The core idea of HEliOS involves around finding a secure encoding method based on a novel notion of Huffman coding, which compresses the given digital data using a small sized "secret" (called as secret_intelligence in our study). HEliOS does this in such a way that, without the possession of the secret intelligence, an attacker will not be able to decode the encoded compressed data. Hence, by encrypting only the small-sized intelligence, we can secure the whole compressed data. Moreover, our rigorous real experimental evaluation for downloading and uploading digital data to and from a personal cloud storage Dropbox server validates efficacy and lightweight nature of HEliOS. 
    more » « less